15

ロール to ロール走行式成膜装置

Roll to Roll Conveying Deposition System

山	\blacksquare		実	Minoru Yamada	1
石	田	俊	道	Toshimichi Ishida	2
横	山	政	秀	Masahide Yokoyama	2
中	静	勇	太	Yuta Nakashizu	2
田	窪	芳	久	Yoshihisa Takubo	3
黒	瀬		守	Mamoru Kurose	4
中	井	清	人	Kiyoto Nakai	4
原	田	寿	典	Hisanori Harada	4
森		孝	之	Takashi Mori	5
上	出		修	Osamu Uede	5
岡	部	Ξ	郎	Saburo Okabe	4
上	野	晴	紀	Seiki Ueno	4

あらまし

当社では、走行フィルム上に多種多様な膜を付ける成膜装置の開発を進めている。本稿では、スパッタ 源を搭載した装置の構成を紹介し、ITO(Indium Tin Oxide)透明導電膜のスパッタ成膜技術と、AIのEB (Electron Beam)蒸着技術の開発状況について説明する。また、フィルム走行制御システムの構成と、 フィルムを大気中と真空チャンバー間で搬送する装置の開発状況についても報告を行う。

Abstract

We are developing deposition systems for the various layers of conveying film. In this paper, we introduce the system with a sputtering source and explain the development status of sputtering technology for ITO (Indium Tin Oxide) transparent conductive films and of EB (Electron Beam) evaporation technology for Al. We also report on the configuration of the film conveying control system and the development status of the Air to Vacuum (Vacuum to Air) system.

1. 緒 言

さまざまな電子部品や家電製品が薄型化、軽量化、 低価格化されていく中で、部品や製品の基板に関して、 従来のガラスをフィルムに変更するニーズが高まりつ つある。そこでHitz日立造船では、フィルムへの成膜 手段としてロールtoロール(以下RtoR)成膜装置の 開発を進めている。巻頭に開発装置の写真を示す。

従来のバッチ式による成膜装置では、静止状態のガ ラス基板、またはフィルムの1枚カット品の上に機能 性膜を付けていたが、本装置の使用により、ロール巻 きフィルムへの連続走行成膜が可能となり、生産性を

① Hitz日立造船㈱ 精密機械本部 開発センター 真空成膜グループ長 博士(工学)
② Hitz日立造船㈱ 精密機械本部 開発センター 真空成膜グループ
③ Hitz日立造船㈱ 精密機械本部 システム機械BU 設計部 プロポーザルグループ
④ Hitz日立造船㈱ 精密機械本部 システム機械BU 設計部 プロセス搬送グループ
⑤ Hitz日立造船㈱ 精密機械本部 電子制御BU 第1設計グループ

高めることができる。

本装置はフィルム上に多種多様な膜を付ける成膜装 置であり、最大幅500mm、最大長さ300mのフィルム に、透明な膜で電気を通す透明導電膜をはじめ、金属 膜や、酸素、水分から製品を守るバリア膜、電磁波を 吸収する電磁波吸収膜などを成膜でき、膜種に応じて 成膜源をスパッタや蒸着に交換できる構造としている。

本稿では、まずスパッタ源を搭載した装置の構成を 説明し、ITO (Indium Tin Oxide)透明導電膜のスパッ タ成膜技術と、AlのEB蒸着技術の開発状況について 報告する。次にフィルム走行制御システム構成につい て説明し、最後にフィルムを大気中と真空チャンバー 間で搬送する装置の開発状況について述べる。

2. スパッタ装置構成

図1に装置の真空排気系統図を、図2に装置構成を 示す。

¹⁶ 特集論文

図1 真空排気系統図

真空排気系は、ドライポンプ(DP)、メカニカルブー スターポンプ(MB)、ターボ分子ポンプ(TMP)、ク ライオポンプ(CP)により構成されている。ガス流 量制御にはマスフローコントローラ(MFC)を使用 している。動作は、大気から20Pa程度まで粗引きバ ルブ(RV)を開放して排気した後、RVを閉め、自動 圧力コントロールバルブ(APCV)を開放し、メインバ ルブ(MV)を開にし、1時間程度で10E-4Pa台(高真 空状態)となる。未使用フィルムが入っている場合に は、もう少し時間がかかる。成膜時は、ガスバルブ (GV)を開にして、Ar、O2等のガスを導入し、MVを 閉にして、APCVで真空度を制御し0.6Pa程度で処理 を行う。

装置内のフィルム走行系は、巻き出しロール、巻き 取りロール、張力制御ロール、メイン冷却ロール 等 で構成されている。この間フィルムを真空中で走行さ せながら、メインロールの下のカソード電極のター ゲットに、負の電圧を印加してプラズマを発生させ、 薄膜をフィルム上に形成する。

<装置仕様>

フィルム厚み:50 ~ 200µm フィルム長さ:最大300m フィルム幅:300 ~ 500mm フィルム張力:30 ~ 200N

フィルム搬送速度: 0.5 ~ 10m/min

3. 高効率カソードの開発

ITOのマグネトロンスパッタ成膜において、従来の カソードではターゲット材が局所的に消耗し、ター ゲットの利用効率が20%未満であった。RtoR成膜の 場合、走行成膜中にターゲット材が底をつくことは許 されない。

そこで本開発においては、ターゲット材の利用効率 を向上させることを検討した。その考え方を、図3に 示す。

ターゲットを搖動させることで、ターゲットが一様 に消耗し、利用効率を改善できることがわかる。また、 磁気回路を固定とすることで、キャンロールに対する 放電状態を一定に保持することができる。

上記の考え方で磁場シミュレーションソフトを活用 してカソードを試作し、利用効率を実測した結果、 40%台の効率を得ることができた。

図4に高効率カソード(左)と従来カソード(右) の写真を示す。従来カソードと比較して高効率カソー ドのターゲットは局所的な消耗はなく、一様に消耗し ていることが確認できた。また、高効率カソードでは プラズマによるターゲット温度上昇が抑えられ、さら には異常放電の一因であるノジュールが発生し難くな ることも判明した。

本カソードはITO以外の材料にも展開が可能である。

17

4. 長尺方向の ITO シート 抵抗安定化検討

ITOを成膜するフィルム基板としてPET、PEN、PI 等が用いられるが、これらの樹脂フィルムは水分を吸 湿しやすく、この水分が真空成膜中に脱ガスし、膜質 に影響を及ぼすと考えられている。

今回、ITO成膜中に水分分圧をモニターした結果、 シート抵抗との間に強い相関関係があることが判明した。このため、フィルムを脱気し水分分圧の変化を極 力抑えた状態で成膜データの取得を行った。

図5は、100 μ mのPET基板にITOを搬送速度:0.5m/ minにて長さ75m成膜した時の長手方向のシート抵抗 分布(幅方向の抵抗を平均化)を示したものであり、 抵抗のばらつきが±1%程度に抑えられていることが わかる。ITOの膜厚は100nmである。

図6は、長尺75m、400mm幅エリアのシート抵抗分 布を示したものであり、±4%程度の抵抗分布が得ら れている。

5. RtoR 成膜装置への EB 蒸着源の搭載

図2において、ターゲットの設置されているカソー ド電極を取り外し、当社が開発した低ダメージEB蒸 着源を搭載して、RtoR連続成膜技術確立のための検 討を行った。

蒸着源がポイントソースに近いため、膜厚均一性を 確保するにはフィルム巾に応じて蒸着源を巾方向に増 まず、EB蒸着源を2基使用し、AI成膜速度コントロー ルの最適化を行った結果を報告する。ULVACの成 膜コントローラCRTM-9000を使用して成膜速度をモ ニターし、EBのエミッション電流をPI(Proportional-Integral)制御することにより、成膜速度を一定値に コントロールした。図7にその制御フローを示す。

図7 マルチEB蒸着速度制御フロー

EB1とEB2は独立制御とした。EB1の成膜速度に EB2を追従させる従属制御の条件だしも行ったが、追 従性が悪く、数秒の遅れが生じたため採用を見送った。 図8にその結果を示す。

EBの加速電圧を1.7kV、成膜速度を4nm/s一定とした。PI制御パラメータを最適化することにより、EB 間の成膜速度のばらつき、及び各EBの成膜速度の時 間変動値を±1%以下とすることができた。EB1とEB2 において、エミッション電流値に若干の差異がみられ るが、ルツボ断熱性にばらつきが生じたことが原因と 考えられる。この結果より、静止成膜の場合はもちろ ん、RtoR走行成膜の場合でも、膜厚変動の小さい安 定した成膜を行える目処を得た。 現在、図9のようにRtoR装置へEB蒸着源2基を搭載し、材料連続供給技術の検討を行っている。

材料供給機構付EB蒸着源(2基)

6. 搬送制御システム構成

6.1 搬送制御システム構成 搬送装置は、搬送用軸と溜め込み用軸とアライメント微位置出用軸で 構成される。駆動軸は、全てサーボモータで構成され、 停止精度・張力・速度の運転制御能力を高めることを 目的としている。

制御イメージを図10に示す。

搬送制御は、インフィードロールと称するサーボ モータ駆動軸を基準ロールとして位置決めモードで制 御する。他の搬送軸も同じくサーボモータで駆動し、 速度制御+張力補正制御(PID制御)を行い、ロール 間で発生するメカロスや摩擦ロスによって生じる張力 変動に対応する。

6.2 張力制御 搬送制御の特徴部について以下に示す。

装置全体にニップロールを装備し、チャンバ毎に異 なる張力制御を可能とする。張力制御は、成膜の数ケ 所で行い任意での設定を可能としている。

搬送制御にとって、加減速時の張力を一定値に維持 しながら制御することが求められるが、本装置では、 張力補正制御(PID制御)を組合せることにより設定 値に対し仕様速度の範囲での変動幅を実現している。

搬送制御ループ図を図11に示す。

6.3 速度制御 基材の巻出、巻取まで連続 で変化する。その変化に追従した速度制御を行うにあ たり、回転速度を算出する為の巻径の正確さが必要に なった。

一般には、機材の厚みを設定して1回転毎に足しこ む方式や、直近のフィードロールとの回転比を出すこ とで巻径を演算する方式が用いられる。

しかし、二例とも、機材の張力等の外力による絞ま り具合の違いによって径の大きさが変化する為に、常 に補正を加えていかなければならず、最適な補正量を 見出すには多くの調整時間をかけ傾向を導き出す必要 があった。

それ以上に、ワークの厚みが途中で変化するために、 上記の制御方式では切り替わり部分を判断する手段が なく、非常に困難な補正制御を加える必要があった。

本装置では、巻出、巻取1回転に対して直近のフィー ドロールの搬送距離を算出し、そこから径を換算する 方式を採用した。結果として、1回転毎にほぼ実際値 に等しい値を得ることが可能であり、これにより巻径 計算で算出したロール回転速度と、基準ロール速度の 誤差を最少限に抑えることが可能となった。

しかし摩擦ロスや微細な速度差による張力差は現れ るため、速度指令に張力ループのPID制御のMV値を 加えることにより補正を行い、速度差を打ち消してい る。

6.4 停止精度 この装置の運転操作は、搬送 の停止精度を高くする必要があった。その為に、基準 ロールに位置決め制御モードを選択している。ロール での滑りを考慮せず制御が可能である。これは、大気、 真空環境でも精度が変化する傾向は現れず、補正制御 の時間短縮、つまりタクトタイムの短縮につながって いる。

6.5 蛇行制御 EPCと称するエッジポジショ ンコントロールを設置する。設置する場所に適するよ う二種類の構造を有し、ロール台座スライド型、ロー ルスイング型で構成する。真空チャンバとしては、ス ライド型特有の機能を有している。

真空状態にすると、ベローズ部で台座が引きこまれ る方向に作用し、EPCのアクチュエータの調整能力で は位置を保持することが出来ない。そうなると基材に

19

ストレスをかけ、過張力や、パターン破損を起こして しまう。

その防止策として、EPCアクチュエータの駆動力の 補助としてシリンダ(電空バルブにて制御)を装備し、 真空度により変化する力に合わせバランスするよう制 御を行っている。EPCは、基材にストレスを与えない ようなるべく急激な動作と搬送停止状態での動作をさ けている。

今回使用したAE1000は、制御電圧を下げることで 速度を落とすことが出来るが、作動トルクにも影響す るため、速度トルク両面をふまえた設定が必要となる。 これは、上記の電空バルブの制御にも関連する為、搬 送テストより最適値を模索する必要があった。

6.6 機械、チャンバの特性の影響 真空と大 気環境ではチャンバ壁面の歪みの状態が変化する。そ れが要因となって、チャンバに固定されているロール の微少な位置変化が生じPLCに取り込まれる張力値に 変化が現れる。

真空時には、チャンバが萎み基材が弛むことで張力 が低くなり、大気ではチャンバが元に戻って基材が張 り、張力が高くなる症状が現れる。

この為、張力を設定値で維持するよう、対策を加え て解消している。

以上が今回の真空搬送の要点・特徴であり、以下が 今後の装置において、より改善を要す項目である。 【今後の課題】

- (1) 搬送速度の高速対応
- (2) 低張力1N制御の実現化
- (3) 蛇行補正能力の向上(巻取形状の向上)

7. 大気から真空へ(膜面非接触) ATV 装置

7.1 概要 Air to Vacuum (ATV) 装置は、 フィルム状基材を大気圧から高真空成膜プロセスへ導 入する装置で、設備稼働率の向上を目的として開発を 進めている。ATV開発機は、前後室と差圧ユニット で構成され前室圧力・スリット隙間・搬送速度・張力 などを変数として、基材が損傷無く搬送されることを 判定基準とし、許容差圧、騒音及び流入量を定量化し、 ATVシステム設計基準を確立するものである。図12 に外観図を示す。

- 7.2 実験機材料・性能
- (1) 使用基材
 - 材質:PET・PEN
 - 幅 : 500mm

厚み:50µm~200µm

- 膜面接触エリア:端部より15mm以内
- (2) 実験機仕様

搬送速度:1.0~30m/min

- 張力制御:10~200N
- 前室圧力:大気 (100KPa) ~ 10Pa

後室圧力:大気圧近傍~1.0×10⁴Pa ユニット最終到達圧力値:1.0×10⁴Pa

チャンバは、3分割構成(前室、仕切差圧室、後室) 搬送は、巻き出しロール、仕切りロール、巻き取りロー ル、ロール間のテンションロールのフイルム搬送系に より構成される。

図12 ATVユニット外観図

仕切りロールの隙間を通過時の接触損傷だけでなく 膜面側段付ロールによる気流、張力による凹み損傷を 与えることなく搬送でき、バタツキ、傷、破損の不具 合が生じることなく連続に大気から高真空へフィルム 搬送をする装置を提供するものである。

原理:流路抵抗+スリット噴出動圧

- 特徴:(1) 噴出動圧を小さくできる。
 - (2)騒音が低減される。

実験結果の例を図13に示す。仕切りロールを挟ん で、高圧側の圧力をP1、低圧側をP2とし、両チャンバー 間の流量を単位SLMで表現した。圧力特性において フイルムに傷無く搬送可能であることを実験にて確認 できた。

7.3 ローラ隙間流れの負圧流体解析

(1) 解析条件
スリット間隙:0.4mm
入口圧:101.3kPa
出口圧:20~90kPa
搬送速度:30m/min(ATV)

7.4 結果 スリット間隔0.43mmで100 µ m基 材、前室は大気圧から40kPa、搬送速度30m/minの条 件で膜面に損傷を与えない許容差圧30kPaが確認でき た。

7.3解析結果より前後室差圧P1-P2=30kPa前後で基 材表裏差圧が急上昇する傾向ともよく合っている。実 験、試算結果から必要ユニット数も大気圧から10kPa は、3段10kPa から1.0E-5Paは3段で減圧できる目処が つき、大気から10E-5Pa台の真空度は6段ユニットで 達成できる見込みがついた。

この時の大気流入量は1,000SLM以下、真空ポンプ 実負荷動力:約10Kwであった。

7.5 今後の活動 RtoR装置での搬送準備工 程に時間及び真空状態での作業のため2-3名必要があ る。真空作業を効率よくする為に大気中でのWD、 UWDのセットが出来れば、作業人員の削減と時間短 縮ができる。1ユニットでの7.4結果より大気より成膜 室まで10-5Paで供給が可能と想定できる。

6ユニットのATVを経由にて基材搬送を行い、成膜 室の真空度10⁴Paにまで下げ成膜蒸着を行い、6ユニッ トVacuum to Air (VTA)を経由して大気に戻す、 膜面非接触ATV-VATを2012年に実用化する予定であ る。また、フットプリント縮小のため縦型配置も検討 していく。 今後はATV機構を組み込んだビジネスモデル化ラ インの提案を行い、受注に繋げていきたい。

8. 結言

- (1) ITO透明導電膜のスパッタ成膜において、材料 利用効率:40%以上の高効率カソードを開発した。
- (2) 長尺方向のITOのシート抵抗を安定化するには、 チャンバー内の水分コントロールが重要である ことがわかった。
- (3) AlのEB蒸着において、マルチEBでの蒸着速度 制御技術を確立した。
- (4) フィルム走行制御システム技術を確立した。
- (5) ATV装置の大気 高真空フイルム搬送技術を確 立した。

参考文献

(1) ロールtoロール要素技術と可能性(情報機構)

【文責者連絡先】 Hitz日立造船㈱ 精密機械本部 開発センター 山田 実 Tel:06-6551-9206 Fax:06-6551-9849 e-mail:yamada_mi@hitachizosen.co.jp

